Advanced Materials and the Mobility of Production Functions

Peter Warrian PhD
University of Toronto, IPL
Theme 3: Research Issues

• 2014-2016
 – Advanced Materials
 – Additive Manufacturing
 – SMEs & Knowledge Transfer
 – Internet of Things
 – Industry 4.0

• Theme: The Digitization of Production Value Chains
Tool, Die & Molding Case

• Windsor ON: TDMM Custer
 – 300 firms; 4 of 10 in NA

• Competition from China Plastics Injection Molding Industry
 – Injection Moldmakers

• Digitally enabled mold design & processing
AM & Plastics Injection Molding
AM & Plastics Injection Molding
AM & Plastics Injection Molding
Injection Molding Engineering Ratio

• Environment & Light weighting: Coke & Cars
• Advanced Materials & Machining
 – Key Engineering Ratio
 – Wall Thickness / Height of Container
 ➢ Ratio: 1:200
 ➢ Failure Rate: 0.001 inches

• Good Enough for Coke then good enough for Aerospace.
 – Enabling technology: Hybrid Metallics Additive Manufacturing & Advanced CNC
Hybrid AM CNC Technology

![Image of Hybrid AM CNC Technology process]

From the idea to the finished workpiece on a DMG MORI machine:

1. Idea from the idea to the CAD model
2. CAM programming with NX CAM by Siemens
3. 1:1 Simulation with the DMG Virtual Machine
4. Manufacture with DMG MORI machines
Auto Steel Case

• New Materials Enabling New Design
 – Visualization, Simulation & Assembly

• Additive & Digital Manufacturing
 – New Geometries. Simulate BIW & New Steels

• CAFÉ Standards: OEM, Tier 1 Supplier, Steel Company
 – Design solution from Steel Company
 – Neither Design nor Steel existed previously
AM: Interface of Advanced Materials and Software

• Advanced Materials:
 – Not just specialized and price premium
 – Micro-behaviour of the materials determines macro-behaviour of the product

• Role of Software
 – Research, visualize and compose materials
 – Micro-structural manufacturing
Simulating the BIW for New Steels

Arcelor Honda Door Ring
BIW Open Source Parts
New Steels & Auto Design Cycle

• Old 5 Year Design Cycle
 – Year 1: OEM Signs off on Platform Design
 – Year 2-3 Tier 1 and Lead Stampers included
 – Year 4 Steel & material suppliers included

• New 5 Year Design Cycle
 – Year 1: OEM Signs off on Platform Design
 – Year 2-3 Tier 1, Lead Stampers & Steel Companies included
 – Year 3-5 steel companies act as material advisors to stampers
Conclusion

• New Advanced Materials as Enabling Technologies
 – Manufacture with an advanced material that allows new geometries and designs to emerge
 – Materials enable microstructural manufacturing of new complex assemblies

• Shift in Boundaries of Firms along the Value Chain: Design-Manufacturing-Assembly