REGIONAL RESILIENCE AND ONTARIO’S AUTOMOTIVE CLUSTER: ITS FUTURE IN THE DIGITAL AGE

Elena Goracinova and David A. Wolfe
Innovation Policy Lab, Munk School of Global Affairs
University of Toronto

Presentation to the 4th Annual Partnership Network Conference
Hotel le Crystal – Montréal, QC | May 1-3, 2017
Auto makers rev up Canadian R&D

1. **Self-driving accelerates**
 In this scenario, governments give autonomous vehicles the green light, accelerating uptake of this key new technology.

2. **Electric chauffeurs**
 In this scenario, strict fuel efficiency and emissions requirements and a consumer preference for shared mobility drive a shift towards ridesharing models using electric vehicles.

3. **Connectivity creates new champions**
 In this scenario, connectivity becomes a key factor in winning over a growing automotive market worldwide. New distribution strategies, new partnerships and potentially new entrants reshape the marketplace.

4. **Local business models prevail**
 In this scenario, the established automotive companies need to flex their business models to address very different regulatory requirements in local markets. Operating globally becomes significantly more challenging.

Ford to invest $1.2-billion in Canada, create Ottawa R&D centre
Why the increase in multinational enterprise (MNE) automotive R&D outside of traditional locations?

Use EEG theory to identify factors behind why Ontario is chosen as a source of scientific/technical expertise. What is driving change in the Ontario automotive cluster?

Case studies

Data
I. MNE’S & REGIONAL DEVELOPMENT

- Relations between parent MNE’s & subsidiaries in host locations are changing

- MNE’s becoming mechanism for creating new technologies in discrete regional contexts

Cantwell and Mudambi (2011)
Framework for linkages of MNE R&D units

<table>
<thead>
<tr>
<th>Degree of linkages</th>
<th>Type of linkages</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>Wholly owned R&D unit</td>
</tr>
<tr>
<td></td>
<td>Joint research</td>
</tr>
<tr>
<td></td>
<td>Human resource recruitment, education, training</td>
</tr>
<tr>
<td>low</td>
<td>Arm’s length</td>
</tr>
</tbody>
</table>

Patra and Krishna (2015)
Figure 1. Detroit automakers and geographical dispersion of patent connections

Harvard Patent Network Dataverse; Hannigan et al. 2015

Figure 2. Technological composition of Detroit patents connected to SW Ontario
II. PATH DEPENDENCY & REGIONAL RESILIENCE

“New paths do not emerge in a vacuum, but always in the contexts of existing structures and paths of technology, industry and institutional arrangements” (Martin & Simmie 2008, 186)

A. Path Dependence?

B. Ontario’s knowledge infrastructure/skilled labor

C. Supply chain strengths
Table 3. Plant Managers’ assessment of the degree to which selected public policies inhibit or contribute to plant success

<table>
<thead>
<tr>
<th>Public Policy Measure</th>
<th>Canadian-Owned Plants (n = 72)</th>
<th>Foreign-Owned Plants (n = 43)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (Out of 5)</td>
<td>% Contributes (>3)</td>
</tr>
<tr>
<td>Subsidies and/or tax credits for R&D</td>
<td>3.8</td>
<td>72.2</td>
</tr>
<tr>
<td>Programs to retain or attract vehicle assembly capacity</td>
<td>9.1</td>
<td>63.9</td>
</tr>
</tbody>
</table>

Holmes et al. (2017)
C.

<table>
<thead>
<tr>
<th>Category</th>
<th>2004</th>
<th>2009</th>
<th>% of 2004</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engines and engine parts</td>
<td>$1,902,600,000</td>
<td>$1,146,900,000</td>
<td>60%</td>
<td>$1,361,400,000</td>
</tr>
<tr>
<td>Electrical and Electronic</td>
<td>$299,200,000</td>
<td>$115,100,000</td>
<td>38%</td>
<td>$385,400,000</td>
</tr>
<tr>
<td>Steering and Suspension</td>
<td>$447,000,000</td>
<td>$264,200,000</td>
<td>59%</td>
<td>$432,700,000</td>
</tr>
<tr>
<td>Wheels and Brake Systems</td>
<td>$402,200,000</td>
<td>$185,700,000</td>
<td>46%</td>
<td>$131,300,000</td>
</tr>
<tr>
<td>Transmission and Powertrain</td>
<td>$1,135,900,000</td>
<td>$445,400,000</td>
<td>39%</td>
<td>$761,100,000</td>
</tr>
<tr>
<td>Seating and Interior</td>
<td>$1,384,100,000</td>
<td>$681,800,000</td>
<td>49%</td>
<td>$857,500,000</td>
</tr>
<tr>
<td>Metal Stamping</td>
<td>$1,557,500,000</td>
<td>$797,900,000</td>
<td>51%</td>
<td>$1,405,800,000</td>
</tr>
<tr>
<td>Other</td>
<td>$1,734,500,000</td>
<td>$896,500,000</td>
<td>52%</td>
<td>$1,651,100,000</td>
</tr>
</tbody>
</table>

Source: Statistics Canada, 2014; CANSIM Table 379-0030.
III. CASE STUDIES
GM

R&D

- Cold Weather Testing
- Canada Technical Centre
- GMC Center for Automotive Materials and Corrosion (McMaster)
- Research collaboration with Fraunhofer Project Center (Western U)
- New Engineering and Software Development Center (Markham)
- Communitech Innovation Research Zone
- Automative Center of Excellence (UOIT)
- Research Chair in Advanced Materials (Waterloo U)
- Attempts to establish Automotive Innovation Network

Supply chain

- GM Ventures
- GM-Sapa R&D collaboration
- Exco Technologies
- New mandate for the Canada Technical Centre
- Near IT cluster built around IBM

Project Beacon (2.5 billion, more than 400 million in gov. money)

Joins Automotive Partnership Industry Task Force/ PACE Partner

Partnersed with 9 research institutions in Ontario
IN CONCLUSION

Increased automotive R&D integration in the Great Lakes not only driven by the presence of technological expertise, but by historical relationships and activist policy.

Future research:

- Unpack the creation of R&D partnerships in more detail
- Quantify types of MNE R&D linkages in Canada
- Trace US patents back to innovators in Canada and their affiliations
- Introduce a comparator case