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Engineers for Climate - Getting new technologies to scale 

Engineers for Climate (EfC) aims to accelerate the adoption and diffusion of 

technologies that will decarbonize our data and energy systems at scale, bridging the 

gap between emerging technologies and real-world implementation. By fostering 

interdisciplinary collaboration and practical solutions, EfC seeks to redefine the 

relationship between AI infrastructure and energy systems, contributing to the 

achievement of our 2050 climate goals while addressing critical national security 

concerns. 

 

This white paper is the summary of the first workshop of the EfC’s Compute and Energy 

Working Group, held on October 29 and 30, 2024. 
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Executive Summary 

In our rapidly evolving digital landscape, data centres play a pivotal role, yet their 

burgeoning energy consumption presents a significant challenge as we seek 

sustainable solutions. This White Paper explores the intricate balance between 

advancing artificial intelligence (AI) and mitigating its environmental footprint. We delve 

into the impacts of AI on energy demand and the role of innovative technologies in 

transitioning to carbon-neutral digital infrastructures. 

 

Key discussions, led by experts in the field, examine the limitations posed by our current 

technological parameters and propose strategic frameworks to reconcile the growing 

computational needs with the finite nature of our energy resources. Through workshops 

and expert panels, this document outlines potential solutions, such as improving energy 

efficiency, harnessing waste heat recovery, and moving computing operations to more 

efficient systems, including edge computing. 

 

As the AI industry stands at a crossroads between vertical integration and an 

ecosystem-based approach, our analysis points to the importance of resource 

allocation, talent acquisition, and collaborative innovation in shaping a sustainable 

future. This White Paper serves as both a call to action and a guide for stakeholders 

looking to foster an energy-efficient and environmentally responsible AI ecosystem. 

1. Introduction 

In an era where data has become central to our economies and our lives, data centres 

and their demand for energy have been pushed into the spotlight. As artificial 

intelligence (AI) rapidly evolves from novelty to necessity, these technological 

powerhouses face an unprecedented challenge: an insatiable appetite for energy that 

threatens to outpace our ability to sustainably meet demand.1 

 

This exponential growth raises critical questions about the future of computing and its 

environmental impact: 

● How can we reconcile the seemingly limitless potential of AI with the very real 

limits of our energy resources? 

● As we approach the theoretical boundaries of Moore’s Law and Dennard scaling, 

what innovative solutions can bridge the gap between computational demands 

and energy efficiency? 

 
1 Bashir, Noman, Priya Donti, James Cuff, Sydney Sroka, Marija Ilic, Vivienne Sze, Christina Delimitrou, 
and Elsa Olivetti. 2024. “The Climate and Sustainability Implications of Generative AI.” An MIT 
Exploration of Generative AI, March. https://doi.org/10.21428/e4baedd9.9070dfe7. 

https://doi.org/10.21428/e4baedd9.9070dfe7
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● Most importantly, what strategies can transition our digital infrastructure from 

energy-intensive to carbon-neutral? 

Workshop Overview and Objectives 

A diverse group of compute and energy experts convened for a workshop to tackle this 

complex challenge at Harvard University in October 2024. Participants offered deep and 

complementary experience and knowledge in their relevant domains. Each participant 

was (and is) enthusiastic about tackling the problem of energy+data centres in new and 

more holistic ways. 

 

This white paper is structured as follows: 

● Section 2 examines the current energy landscape, including data centre energy 

demands, future consumption projections, and grid challenges. 

● Section 3 discusses renewable energy in relation to data centres, covering 

corporate procurement strategies and variability issues. 

● Section 4 explores the evolution of data centres, including trends in siting, 

behind-the-fence solutions, and cooling innovations. 

● Section 5 delves into AI hardware advancements, focusing on processing units, 

memory, networking, and cooling systems. 

● Section 6 analyzes the impact of AI workloads, their diversity, and implications 

for grid stability. 

● Section 7 provides an overview of the AI stack and infrastructure, from cloud and 

chip layers to mobile applications. 

● Section 8 highlights opportunities for AI in energy optimization, such as site 

selection and demand response integration. 

● Section 9 outlines key challenges and considerations in the integration of AI and 

energy systems. 

● Finally, Section 10 presents conclusions and future directions for addressing 

these complex challenges, emphasizing integrated planning and cross-

disciplinary collaboration. 

 

Note that while workshop participants recognize the importance of issues like 

cybersecurity and data privacy, these topics were beyond the scope of this workshop. 

 

Appendix A includes a copy of the workshop agenda and list of participants. 
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2. The Energy Landscape 

A decade ago in most jurisdictions, data centres seemed relatively small, even 

inconsequential in the context of the electric grid.2 However, the shift from traditional on-

premise computing to cloud computing, alongside the replacement of Central 

Processing Units (CPUs) with Graphics Processing Units (GPUs), has led to increased 

rack energy densities.3 As a result, data centre energy requirements began to grow 

exponentially. The breakout year for Generative AI in 2023 and its subsequent adoption 

spike in 2024 compounded this trend,4 5 making power availability a primary concern.6 

Projections for Future Consumption 

The Federal Energy Regulatory Commission (FERC) estimates that data centre power 

consumption increased by nearly 2,000 megawatts from 2023 to 2024 and is projected 

to reach 35,000 megawatts by 2030,7 an increase of over 100 percent.8 

 

The electricity generation capacity required to meet this demand will be significantly 

larger for several reasons. First, data centres operate 24/7, necessitating a constant 

power supply. Second, large technology companies are often committed to sourcing 

electricity for their data centres from renewable and/or clean energy sources. However, 

solar and wind energy don't provide a one-to-one match with demand because of their 

capacity factors, typically between 25 and 45 percent. This means that using solar or 

wind alone to fully power a data centre requires installing 2 to 4 times more capacity 

 
2 With the exception of leading data centre jurisdictions like Northern Virginia and Dallas, for example. 
3 Rack density, a key metric in data centre operations, refers to the amount of power consumed by 
equipment within a single server rack. It is typically measured in kilowatts per rack. Traditional non-AI 
workloads in modern data centres typically consume between 8 and 10 kilowatts per rack. However, AI-
dedicated racks, which rely heavily on GPUs, are significantly more energy-intensive. Current AI 
workloads often require between 40 and 50 kilowatts per rack. 
 
The energy demands for AI computing are rapidly escalating. Nvidia, a leading manufacturer of GPUs, 
has announced that its next generation of AI-focused processors will push rack energy densities to 
unprecedented levels. These new chips are expected to require up to 100 kilowatts per rack, with some 
projections suggesting densities could reach as high as 300 kilowatts per rack in the near future. This 
dramatic increase in power density presents significant challenges for data centre cooling, power 
distribution, and overall infrastructure design. 
4 Quantum Black AI by McKinsey, The state of AI in 2023: Generative AI’s breakout year,” August 1, 

2023. 
5 Quantum Black AI by McKinsey, “The state of AI in early 2024: Gen AI adoption spikes and starts to 

generate value,” May 30, 2024. 
6 Cushman & Wakefield Annual Data Centre Market Survey, 2024. 
7 Federal Energy Regulatory Commission, 2024 Summer Energy Market and Electric Reliability 
Assessment, May 23, 2024. 
8 Data centre consumption in 2022 was 17,000 megawatts. 
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than the actual consumption. For this reason, renewable energy is often “backed-up” by 

utilities and grid operators by natural gas power generation (see Section 3). 

 

Notably, AI-driven consumption of electricity could be much higher, even approaching 

levels on par with all annual electricity generation in the U.S. in a very short time as 

envisioned in Leopold Aschenbrenner's "Situational Awareness" (see Chart 1). 9 

Practically speaking, however, such timelines are likely to be constrained by the 

availability and procurement of equipment for both generation and transmission. In 

addition, the permitting process for new generation facilities and for electric and natural 

gas transmission infrastructure is typically lengthy, and construction schedules could 

further complicate deployment. 

 

Chart 1 Aschenbrenner’s “Back of the Envelope” Estimates of AI Electricity 

Demands 

 

 
Source: Aschenbrenner, Leopold, Situational Awareness: The Decade Ahead, June 2024 

 

 
9 Aschenbrenner, Leopold, Situational Awareness: The Decade Ahead, June 2024. 
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Grid Challenges and Interconnection Issues 

And so it is that utility companies and grid operators have been caught in the rush to 

meet requests for connectivity, outstripping available capacity for both electric 

transmission and natural gas supply and transmission to meet the demand for new 

natural gas generators. Applications to connect new energy generation facilities and 

data centre loads have spiked.10 11 In Alberta, Canada, for example the Alberta Electric 

System Operator (AESO) has over 6,000 megawatt of data centre applications.12  To 

put this into context, the average total load demand in Alberta is approximately 10,000 

megawatts, so if all the requests in the AESO queue would go ahead, the generation 

required to meet demand would increase overall average grid flows by 50 percent. 

 

The backlog of projects in the U.S. continues to grow - nearly 2,600,000 megawatts of 

generation and storage capacity was actively seeking grid interconnection at the end of 

2023.13 The current backlog is more than twice the total installed capacity of the existing 

U.S. power plant fleet. 

 

A big challenge for utilities and grid operators is that, if history is any guide, the vast 

majority of these proposed projects will never be built. Research undertaken by 

Berkeley Lab showed that only 19 percent of the projects (and just 14 percent of 

capacity) that were submitted from 2000 to 2018 had been built and were operating 

commercially by the end of 2023.14 This leaves utilities and grid operators with the 

uncertainty of which projects will proceed and when, with significant risks to the system 

if the assumptions are incorrect. The result is delays in the decision-making process 

until more certainty is achieved.  
 

In the big picture, one might argue that data centre electricity demand isn't that 

significant, especially after discounting projects that won't materialize. This view may 

seem reasonable at the macro level, but it's crucial to understand the rarity of a 1,000-

megawatt load. Until recently, such requests for stable baseload demand came only 

once a year or every few years across an entire country. Now, as the data shows, they 

are appearing almost weekly and with the added complication of the significant load 

variability that accompanies AI workloads (see Section 6). 

 
10 Blum, Sam, “Warnings about an AI Buble are Growing. When Could it Burst?” Inc., July 10, 2024. 
11 Chow, Andrew R. and Billy Perrogo, “The AI Arms Race is Changing Everything”, Time, February 17, 
2023. 
12 For more detailed information, see the AESP project list, updated monthly. See https://aeso-
portal.powerappsportals.com/connection-project-dashboard. 
13 Berkeley Lab, “Grid connection backlog grows by 30% in 2023, dominated by requests for solar, wind, 
and energy storage”, April 10, 2024, https://emp.lbl.gov/news/grid-connection-backlog-grows-30-2023-
dominated-requests-solar-wind-and-energy-storage. 
14 Ibid. 

https://aeso-portal.powerappsportals.com/connection-project-dashboard
https://aeso-portal.powerappsportals.com/connection-project-dashboard
https://emp.lbl.gov/news/grid-connection-backlog-grows-30-2023-dominated-requests-solar-wind-and-energy-storage
https://emp.lbl.gov/news/grid-connection-backlog-grows-30-2023-dominated-requests-solar-wind-and-energy-storage
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One of the major challenges is the insufficient development of new generation capacity. 

Many jurisdictions are struggling with supply adequacy concerns, where even a single 

large data centre can significantly disrupt the supply-demand balance. This disruption 

can increase both the risk to consumer reliability and the cost of energy, as prices tend 

to rise in the short term until new generation capacity becomes available. From a public 

policy standpoint, this poses affordability issues, as higher energy prices can lead to 

increased local inflation. If such high prices persist over the medium term, they may 

drive businesses away, ultimately affecting local employment. To address these 

challenges, some governments have implemented "bring your own generation" policies. 

These policies require data centre developers to meet their electricity demands through 

power purchase agreements for new generation or by developing their own energy 

sources. 

 

Requests for new load interconnections are not due to data centres alone. Onshoring 

and the expansion of manufacturing, as well as transportation electrification, are also 

playing a role. For example, the TSMC semiconductor facility in Arizona aspires to be 

1,000 megawatt-sized, with a first phase of 200 megawatts.15 This dramatic shift from 

occasional to frequent 1,000 megawatt-scale demands signals a major change in our 

energy landscape. 

 

Finally, and as illustrated by the TSMC example, there is the question of phasing. One 

thousand megawatt-sized applications are unlikely to come on in one shot. The Power 

Purchase Agreement (PPA) between Talen Energy and Amazon in Pennsylvania (later 

rejected by Federal Energy Regulatory Commission) envisioned a data centre requiring 

960-megawatts of capacity, however, the first phase is only for 120 megawatts. There 

also was an opt-out provision after 480 megawatts.16 

 

As interconnection timelines extend, data centre developers are exploring options 

"behind-the-fence," such as collocating with nuclear power facilities. This strategic 

relocation raises questions about whether these shifts are temporary or indicative of 

long-term siting decisions. 

  

 
15 Jensen, Audrey, “Utility company makes progress on infrastructure for Taiwan Semiconductor project 

in north Phoenix,” Phoenix Business Journal, April 5, 2022. 
16 U.S. Energy Information Administration, “Data centre owners turn to nuclear as a potential electricity 
source”, Today in Energy, in-brief analysis, October 1, 2024. 
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3. Renewable Energy and Data Centres 

Large technology companies have adopted energy procurement strategies that commit 

to ensuring their energy usage is backed by renewable energy, primarily wind and solar. 

According to S&P Global research, Amazon, Google, Meta, Microsoft, and Apple are 

responsible for 60 percent of all corporate-backed renewable energy globally, with the 

vast majority of this installed capacity built and operating in the United States (40,000 of 

45,000 megawatts).17 

Variability and Grid Stability Challenges 

As technology companies (and other companies) have looked to cover the energy 

usage of data centres with PPAs for solar energy, renewable generation has grown 

significantly year-over-year. The scale of solar and wind facilities has also increased, 

such that it is not unusual for utility-scale installations to have a capacity between 400 

and 1,000 megawatts. The integration of renewable generation - primarily wind and 

solar energy - is inherently variable, however, with a fluctuation in energy of around 30 

percent of generation or 120 to 300 megawatts for larger, more recent projects.18 

 

To accommodate variability in renewable energy and semi-dispatchable generation, grid 

operators employ two main strategies: ancillary services and dispatchable backup 

power. Ancillary services are rapid-response mechanisms that maintain grid stability in 

real-time, including automatic generation control,19 fast-ramping resource response, and 

inverter-based voltage regulation.20 These services operate on timescales of seconds to 

minutes, and in traditional grids were supported by inertia from large synchronous 

generators. 21 

 

 
17 Wilson, Adam, “Datacentre companies continue renewable buying spree, surpassing 40 GW in US”, 

S&P Global, March 28, 2023. 
18 Guang Chao Wang et al., “Maximum Expected Ramp Rates Using Cloud Speed Measurements,” 
Journal of Renewable Sustainable Energy 12, 056302 (2020). 
19  Automatic generation control is a real-time control system that automatically adjusts the power output 
of multiple generators at different power plants, in response to changes in the system frequency. 
20 Inverter controls refer to the electronic systems that manage how renewable and storage resources 
(such as solar photovoltaics and batteries) convert direct current (DC) into alternating current (AC) for the 
grid. Modern “advanced inverters” can also provide grid support functions such as voltage regulation, 
frequency response, and reactive power compensation—capabilities traditionally supplied by large 
synchronous generators. 
21 Grid inertia refers to the ability of a power grid to maintain stability and resist changes in frequency. It's 

derived from the rotating mass of large synchronous generators, such as those in coal, nuclear, and 
hydroelectric power plants. These generators naturally resist changes in their rotational speed due to their 
mass, thereby helping to stabilize the grid's frequency when there's a sudden imbalance between 
electricity supply and demand. 
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By contrast, dispatchable backup power refers to generation sources that can be turned 

on or off relatively quickly to meet longer-term changes in electricity demand, typically 

operating for hours or days. The same resources often supply ancillary services when 

scheduled to do so. 

 

Traditionally, fossil fuel plants, particularly natural gas, have provided both ancillary 

services and dispatchable backup power. These plants offer fast-ramping capabilities 

and contribute inertia, which helps maintain grid frequency. However, relying on fossil 

fuels to support renewable energy generation creates a tension between the need for 

reliable power and the desire to minimize carbon emissions. 

 

Clean, semi-dispatchable resources are increasingly being used to provide both 

ancillary services and backup power. Large-scale hydroelectric facilities, where 

available, can offer fast-ramping response, though their capacity depends on reservoir 

levels and can vary seasonally. Nuclear power, while typically used for baseload 

generation, can in some cases be designed to operate flexibly, as seen in Ontario, 

Canada, providing a clean alternative for grid support. 22 

 

AI-focused data centres are anticipated to drive an increased demand for ancillary 

services, raising the unresolved question of who will bear the costs for these additional 

services in many jurisdictions. Accommodating the heightened loads from data centres, 

alongside a growing reliance on renewable energy, will require significant investment in 

electric grid infrastructure. A key policy debate revolves around how these costs should 

be allocated to ensure that tariffs for data centres remain just and reasonable, while 

also safeguarding the interests of existing customers. 

 

As the grid evolves, new technologies such as battery storage, demand response, and 

resources with advanced inverter controls are emerging as alternatives for providing 

ancillary services and even some forms of dispatchable power, helping to balance the 

variability of renewable sources while reducing reliance on fossil fuels. Because of their 

unique characteristics, data centres are also increasingly being utilized as providers of 

ancillary services. For example, a data centre in Calgary, Alberta has been participating 

in a local Demand Response Ancillary Service program since 2014. During dispatch 

events, which occur only a handful of days each year, the data centre can disconnect 

from the grid and run on its on-site backup generators.23 

 
22 International Atomic Energy Agency, “Non-baseload Operation in Nuclear Power Plants: Load 

Following and Frequency Control Modes of Flexible Operation,” IEA Nuclear Energy Series, No. NP-T-
2.23 (2018). 
23 Enel X, “How Data Centres Support the Grid with Ancillary Services?”, 
https://www.enelx.com/tw/en/resources/how-data-centres-support-grids. 

https://www.enelx.com/tw/en/resources/how-data-centres-support-grids
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Grid Supply Overbuild Effect 

The integration of variable renewable energy and semi-dispatchable resources into the 

grid has led to a "grid supply overbuild effect." This effect refers to the need for excess 

generation capacity to be built beyond peak demand requirements to accommodate for 

transmission line losses, maintenance, variability of generation and/or load and to 

ensure grid stability. While the pre-renewable era required a 20 to 25 percent overbuild, 

current levels typically range from 25 to 50 percent varying by jurisdiction (see Table 1). 

This increased overbuild addresses the variability of renewable sources, ensures peak 

demand coverage, accounts for transmission losses, and maintains grid stability. 

 

Table 1 Grid Supply Overbuild Effect in Four Example Jurisdictions 

 

State / 
Province 

Installed 
Capacity 

(GW) 

Peak 
Demand 

(GW) 

Renewable 
Resource 

(GW) 

Renewable / 
Clean 

Resources 
Installed 

(%) 

Overbuild 
(% of 

Installed) 

Alberta* 21 12.5 7 33% 40% 

Ontario 40 30 36** 90% 25% 

Texas 155 78 69.5 45% 50% 

California 83 46 33 40% 45% 

*Note that each of these jurisdictions have very different market structures. For example, in Alberta, the 

market is fully deregulated and independent power producers make generation planning decisions based 

upon market conditions and electricity market frameworks. There is no centralized planning, and the grid 

operator does not mandate an installed capacity or portfolio generation. 

**This number includes significant large-scale hydro and nuclear energy resources. As noted above, 

these semi-dispatchable resources have a different, non-variable generation profile than other renewable 

and clean resources. 

 

As renewable generation increases and grid management becomes more complex,24  

grid overbuild is expected to continue, supported by natural gas power generation. 

Alternative solutions such as direct air capture of carbon dioxide and long-duration 

energy storage are emerging. However, these technologies still require significant 

 
24 MISO’s Renewable Integration Impact Assessment (RIIA), Summary Report - February 2021. 
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commercialization efforts to bring costs down to levels comparable with natural gas 

power generation coupled with carbon capture and storage.25 

4. Data Centre Evolution 

While traditional data centre hubs like Northern Virginia, Dallas, Chicago, Phoenix, and 

Northern California remain popular, developers are experimenting with new siting 

strategies, including co-location with industrial facilities and cooler-climate locations. 

These new strategies include: 

• Co-location with industrial facilities: Data centres are being built adjacent to nuclear 

plants26 and natural gas power generation facilities. 27 

• Cool climate locations: Developers are choosing sites in cooler regions to leverage 

natural cooling benefits.28 

This shift in location strategy aims to ensure reliable power supply and reduce energy 

costs. However, it comes with a trade-off in terms of increased latency.29 The long-term 

viability of this trend remains uncertain. 

 

Ninety percent of electricity used by a data centre is for cooling, server operations, and 

network equipment (see Table 2). As data centre developers look further afield for 

access to power, they are also looking to increase energy efficiency and reduce cooling 

requirements. 

  

 
25 Brick, Jamie et al., “The role of natural gas in the move to cleaner, more reliable power”, McKinsey & 

Company, September 1, 2023, https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-

insights/the-role-of-natural-gas-in-the-move-to-cleaner-more-reliable-power. 
26 Garver, Rob, “Tech firms increasingly look to nuclear power for data centre,” Voice of America News, 
October 15, 2024. 
27 Sandy Segrist. Behind the Hype: The ' Jaw-dropping' Expectations for AI, Natural Gas. Hart Energy, 

September 5, 2024. https://www.hartenergy.com/exclusives/behind-hype-jaw-dropping-expectations-ai-
natural-gas-210333. 
28 Municipal District of Greenview, “Media Release: World’s Largest AI Data Centre Industrial Park 

‘Wonder Valley’ coming to the Greenview Industrial Gateway“, https://mdgreenview.ab.ca/media-release-

ai-data-centre-gig.  
29 Latency is the delay between sending and receiving information over a network 

https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/the-role-of-natural-gas-in-the-move-to-cleaner-more-reliable-power
https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/the-role-of-natural-gas-in-the-move-to-cleaner-more-reliable-power
https://www.hartenergy.com/exclusives/behind-hype-jaw-dropping-expectations-ai-natural-gas-210333
https://www.hartenergy.com/exclusives/behind-hype-jaw-dropping-expectations-ai-natural-gas-210333
https://mdgreenview.ab.ca/media-release-ai-data-centre-gig
https://mdgreenview.ab.ca/media-release-ai-data-centre-gig
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Table 2 Energy Use Comparison of Traditional vs. Hyperscale Data Centres* 

 

Category Traditional Data Centre Hyperscale Data Centre 

Cooling 40% 25% 

Server Operations 30% 50% 

Networking Equipment 20% 15% 

Storage Drives 5% 5% 

Other 5% 5% 

*Note that these numbers are approximations and depend on the method used to embed Network 

Interface Controllers (NICs). The ambiguity arises from the fact that NICs can be viewed as both part of 

the server hardware and as networking equipment. 

Industrial Co-location Benefits 

Locating data centres near large industrial sites offers several advantages: 

• Fiber connectivity 

• Existing industrial permits, including water permits 

• Access to pre-existing grid interconnections or bypassing the electric grid entirely 

• Access to natural gas 

• Potential integration of waste heat from industrial facilities for data centre cooling 

needs 

Cooler Climate Location Benefits 

Siting data centres in cooler regions provides significant advantages: 

• Natural heat dissipation, reducing energy consumption for cooling 

• Alignment with free cooling principles, minimizing chiller usage 

• Potential for waste heat recovery systems (using absorption chillers), offering up 

to 10% additional energy use reduction30 

 

In a case study comparing siting a data centre in Alberta versus Texas, analysis 

indicated that this benefit of siting at a cool-temperature location could be as much as 

 
30 Estimate by a workshop participant. 
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20 percent. Energy savings are assumed to be transferred from cooling to computing 

tasks, thus also theoretically reducing a data centre user's cost of compute. 

Cooling Innovations 

Meanwhile, the power required by CPUs and GPUs to handle AI workloads continues to 

grow (see Chart 2). The more power used; the more heat generated. This necessitates 

the use of innovative liquid and immersion cooling technologies, as traditional direct air 

cooling will no longer suffice at the IT component level.31 Technologies under 

development include: 

● Advanced Liquid Cooling: This technology offers superior heat dissipation 

compared to traditional air cooling, reducing energy consumption associated with 

thermal management. 

● Immersion Cooling: This approach submerges servers and IT equipment in a 

non-conductive dielectric liquid to efficiently dissipate heat, reducing energy 

consumption and increasing computing density. 

 

Chart 2 GPU and CPU Power Trends 

 

 
Source: Open Compute Project 

 
31 Chen, Cheng et al., OCP OAI System Liquid Cooling Guidelines, Open Compute Project, October 1, 
2024. 
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5. AI Hardware Advancements 
In the race for AI supremacy, the need for speed has become paramount, driving an 

urgent demand for hardware innovation. As AI systems grow increasingly complex and 

data-intensive, traditional computing architectures face significant challenges. These 

include limitations in processing capacity, bottlenecks caused by copper interconnects, 

and thermal constraints that force systems to operate below their full potential. The laws 

of physics themselves present barriers to advancement, pushing researchers and 

engineers to explore novel solutions. These challenges have become the primary 

catalysts for innovation in AI hardware. 

 

To overcome these obstacles, the industry is witnessing a shift towards specialized AI 

hardware. Advanced GPUs, Tensor Processing Units (TPUs), and custom-designed 

chips are being developed to handle the unique computational demands of AI 

workloads. Moreover, innovations in hardware design are not limited to processing units 

alone. Advancements in interconnect technologies, cooling systems, and energy-

efficient architectures are equally crucial in pushing the boundaries of AI capabilities. 

Processing Units 

AI servers increasingly integrate advanced processing units to handle complex AI 

workload demands. These include: 

● CPUs and GPUs: Traditional CPUs are often paired with GPUs, which are 

optimized for parallel processing tasks common in AI applications. 

● AI Accelerators: Specialized hardware such as TPUs and Field-Programmable 

Gate Arrays (FPGAs) are being deployed to enhance computational efficiency 

and performance per watt. 

These advancements aim to address the significant energy demands of AI workloads by 

improving processing efficiency and reducing power consumption. 

Memory and Storage 

The memory and storage components of AI servers are critical for managing large 

datasets and ensuring rapid data access: 

● High Bandwidth Memory (HBMs): HBMs are like stacked memory chips that can 

transfer data super-fast, making computers more powerful and energy-efficient 

than those using regular memory. Integrated inside GPUs, this is the fastest 

memory with lowest level of latency in existence. 

● High-Capacity Random Access Memory (RAM): Essential for holding models and 

datasets in memory, enabling faster processing. 
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● Fast Storage Solutions: Solid State Drives (SSDs) and Non-Volatile Memory 

Express (NVMe) drives provide the speed necessary for efficient data retrieval 

and storage operations. 

Innovations in this area focus on reducing latency and improving throughput, 

contributing to overall energy efficiency. 

Networking Components 

AI workloads require robust networking solutions to facilitate rapid data transfer: 

● GPU Networking using NvLink: This technology is crucial for scaling compute 

power beyond a single chip, with copper connections supporting up to 72 GPUs 

and optical interconnects extending this capability to thousands of GPUs, 

essentially allowing them to act as a single, massively powerful chip. 

● High-Speed Interfaces: Technologies like InfiniBand and high-bandwidth 

Ethernet support the fast data transfer rates needed for AI applications. 

● Switches: High-performance network switches are crucial for maintaining efficient 

communication within server clusters. 

These components help minimize bottlenecks in data flow, thereby optimizing energy 

use across the network infrastructure. 

Silicon Photonics 

Silicon photonics is an emerging technology that leverages light for data transmission 

within and between chips, offering several advantages over traditional electronic 

interconnects, such as copper: 

● Higher Bandwidth: Silicon photonics can potentially achieve data transmission 

rates of terabits per second, significantly enhancing the speed of data transfer in 

AI systems. 

● Lower Latency: By using optical signals instead of electrical ones, silicon 

photonics reduces signal delay, which is crucial for high-performance AI 

applications. 

● Reduced Power Consumption: Optical interconnects consume less power than 

electrical counterparts, especially over longer distances, making them a 

promising solution for improving energy efficiency in data centres. 

 

Copper interconnects, widely used for linking components like GPUs, face limitations in 

reach and performance as data capacity increases. At high capacities, copper requires 

"retimers" or electronic repeaters to maintain signal integrity, which introduces 

significant power consumption and latency due to signal regeneration. Silicon photonics 
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overcomes these limitations as a miniaturized optical technology built in the same 

material as semiconductor integrated circuits which allows it to be co-packaged with 

other IT components. This technology offers an extended reach of hundreds of meters, 

enabling larger GPU domains compared to copper interconnects, while also significantly 

reducing power consumption and cost over those distances. 

 

The integration of silicon photonics into AI hardware could lead to substantial 

improvements in energy efficiency and performance, particularly in environments where 

data movement is a significant energy consumer.  

6. AI Workload Diversity and Its Impact 
AI workloads can be broadly categorized into two main types: training and inference. 

Both types consume significant amounts of energy, but their patterns of consumption 

differ. Training involves creating the model's knowledge base and capabilities, while 

inference is the application of a trained model's knowledge to specific tasks. 

 

Recent studies reveal substantial heterogeneity in resource demands and performance 

profiles across various AI applications. The resource profile of AI workloads varies not 

only between training and inference, but also across specific applications. This diversity 

extends across multiple dimensions, including: 

● Compute Intensity 

● Memory Capacity 

● Memory Bandwidth 

● Network Latency Sensitivity 

● Network Bandwidth 

 

These diverse computational and networking requirements ultimately translate into 

distinct patterns of electricity use. To understand the full system impact, it is necessary 

to examine how AI workloads drive fluctuations in power demand at the grid level. 

Power Demand Fluctuations 

As Large Language Models (LLMs) and other AI workloads become more prevalent 

within data centres, new patterns of electricity consumption and the potential for 

significant transient behavior are starting to emerge. Recent engineering studies have 

highlighted the unique challenges posed by these workloads, particularly in terms of 

their rapid power demand fluctuations and heterogeneous resource requirements. 
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A study32 on the impact of AI workloads on electric grid stability focused on the rate of 

change of power consumption in large-scale GPU clusters. Example calculations for a 

data centre with 10,000 GPUs and 50,000 GPUs, assuming a worst-case scenario 

where GPUs transition from idle (10% thermal design power) to full load (100% thermal 

design power) within a one-second timeframe, showed that the calculated rates of 

change, particularly for the 50,000 GPU scenario, exceed typical minute-level ramping 

capabilities of distribution grid designs (see Appendix B). 

Implications for Grid Stability 

The rapid fluctuations in power demand from AI workloads pose significant challenges 

for grid stability. Traditional grid designs and technical interconnection requirements are 

typically limited to ramping capabilities of 10 percent per minute. The potential for 

sudden, large-scale changes in power consumption from AI-focused data centres could 

strain existing grid infrastructure and require new approaches to power management 

and distribution. 

 

Grid operators are responsible for ensuring the reliability, stability, and resilience of the 

electrical system. If interconnections have the potential to negatively impact this 

imperative, grid operators require the interconnection to self-manage to meet technical 

requirements. Self-management could include managing variability with battery storage 

or off-grid self-generation to minimize impact on grid stability. However, for a 1,000-

megawatt data centre, suitable battery storage options do not currently exist, forcing 

data centres to adhere to technical grid requirements. 

  

Data centres currently have the capability to manage their demand and data use, 

including the ability to support peak load shaving (reducing load during peak periods). 

However, the current offering of ancillary services and grid interconnection requirements 

does not provide incentives for data centres to support grid operators in fulfilling their 

mandate.  

 

These challenges underscore the need for more sophisticated grid modeling, predictive 

infrastructure planning, and potentially new strategies for demand response and load 

balancing to accommodate the unique characteristics of AI workloads. 

  

 
32  Li, Yuzhuo et al., “The Unseen AI Disruptions for Power Grids: LLM-Induced Transients”, September 9, 
2024, https://arxiv.org/html/2409.11416v1. Presented to IEEE Subcommittee on Big Data and Analytics 
for Power Systems. 

https://arxiv.org/html/2409.11416v1
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7. The AI Stack and Infrastructure 

The AI-stack, which includes the cloud and chip layer, database layer, LLMs, 

middleware layer, and mobile and web applications, provides a holistic view of energy 

consumption across the entire AI infrastructure. Each layer contributes differently to the 

overall energy usage. 

Cloud and Chip Layer 

At the foundation of the AI stack, cloud infrastructure and specialized AI chips form the 

computational backbone. These components, including GPUs, TPUs, and other AI-

specific hardware, provide the massive parallel processing power essential for AI tasks. 

The energy demands here are substantial, highlighting a key area for efficiency 

improvements. Performance per watt has become a critical metric in this layer, driving 

the development of more energy-efficient AI chips. 

Database and Storage Layer 

Built atop the hardware, this layer manages the vast datasets crucial for AI. Efficient 

data storage and retrieval systems are vital for optimizing AI workloads, with energy 

considerations extending to data centre cooling and power management for large-scale 

storage. 

 

Energy-efficient data management techniques are gaining traction. For example, data 

compression can reduce storage requirements and energy consumption by up to 80 

percent, while intelligent caching mechanisms can minimize data movement, further 

reducing energy use. 

Large Language Models 

LLMs represent the core AI engines, requiring immense computational resources for 

training and inference. The energy intensity at this layer, particularly during extended 

training periods, underscores the need for more efficient training algorithms and 

hardware utilization. 

Middleware Layer 

Acting as a critical bridge, the middleware layer manages Application Programming 

Interfaces (APIs), load balancing, and data preprocessing. While less computationally 

intensive, its role in orchestrating data flow and resource utilization is crucial for overall 

system efficiency. 
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Efficient resource allocation through advanced scheduling algorithms can lead to energy 

savings of up to 30 percent in large-scale AI deployments. Additionally, workload 

distribution optimization can reduce idle time and improve overall energy efficiency. 

Mobile and Web Applications 

The top layer comprises user-facing applications that leverage the underlying AI 

infrastructure. Though less energy-intensive, optimizing data transmission and local 

processing on devices remains important for system-wide efficiency. 

 

The balance between on-device processing and cloud offloading is crucial for energy 

efficiency. Edge AI, which processes data closer to the source, can reduce energy 

consumption by up to 50% compared to cloud-only solutions for certain applications. 

Interdependencies 

The layers across the AI stack are interdependent and, as AI workloads grow, each 

layer faces increased demands, highlighting the need for scalable solutions across and 

between components. For this reason, there is an increasing emphasis (or reemphasis) 

on hardware-software codesign which can lead to energy efficiency improvements. 
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8. Opportunities for AI in Energy Optimization 

Optimized Site Selection 

AI algorithms can be used to analyze complex datasets to identify ideal data centre 

locations, considering factors such as: 

● Power availability and grid stability 

● Proximity to renewable energy sources and other critical infrastructure 

● Climate conditions for efficient cooling 

● Availability of water for cooling 

● Network connectivity requirements 

● Proximity to users, latency 

● Local regulations and incentives 

 

This data-driven approach can lead to more energy-efficient and sustainable data 

centre placements. 

Demand Response Integration 

Data centres have the potential to play a role in grid demand response by intelligently 

managing their energy use. This can involve: 

● Shifting non-urgent computing tasks to off-peak hours 

● Adjusting workloads based on real-time grid conditions 

● Participating in automated demand response programs 

 

It is worth noting that while such solutions have been available for several years, there 

has been limited implementation of these approaches to date as there is a lack of 

incentives for ancillary services. 

Integrated Grid Modeling 

AI can facilitate the development of sophisticated digital twins for regional and national 

power grids, enabling: 

● Real-time monitoring and optimization of power distribution 

● Improved load balancing and demand response strategies 

● Enhanced integration of renewable energy sources 

● Predictive maintenance of grid infrastructure 

● Rationalization of actual versus designed or planned system models 
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These models can lead to more efficient and resilient power systems. 

Predictive Infrastructure Planning 

Leveraging AI's predictive capabilities, data centre operators can: 

● Forecast future power demands based on AI workload trends 

● Optimize power distribution for specific AI tasks 

● Model renewable energy availability and required grid responses 

● Reduce grid overbuild by accurately predicting energy needs 

 

AI-driven simulations can also help identify and mitigate potential negative impacts of 

data centre operations on energy and water resources at local, regional, and national 

levels. 

Cooling System Optimization 

AI can optimize data centre cooling systems by: 

● Predicting heat generation based on workload patterns 

● Adjusting cooling in real-time to match actual needs 

● Identifying opportunities for waste heat recovery and reuse 

 

These optimizations can significantly reduce energy consumption associated with 

cooling, which accounts for a substantial portion of data centre energy use and cost. 

Workload Scheduling and Resource Allocation 

AI can improve the efficiency of data centre operations through: 

● Intelligent workload scheduling to maximize energy efficiency 

● Dynamic resource allocation based on real-time energy availability 

● Optimization of server utilization to reduce idle energy consumption 
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9. Challenges and Considerations 

Skills Gap in Holistic Integration 

The integration of AI in data centres and electric grids faces a significant skills gap, 

particularly in merging expertise from power engineering and computing to develop 

innovative solutions. This gap is evident in the need for professionals who can navigate 

both domains effectively, fostering interdisciplinary collaboration and systems thinking to 

address complex challenges. Bridging this skills gap is crucial for creating holistic 

approaches that enhance energy efficiency and sustainability in both sectors. 

Data Quality and Availability 

Both data centres and electric grids increasingly rely on vast amounts of data for 

efficient operation. Data centres need high-quality datasets for AI training and inference, 

while electric grids require accurate, real-time data for load balancing and demand 

response. Ensuring data quality, managing large volumes of information, and extracting 

meaningful insights are shared challenges.33 

Switching Costs 

Both data centres and the electric grid face significant switching costs when adopting 

new technologies. For data centres, transitioning to AI-optimized infrastructure involves 

substantial financial investments in new hardware and software, as well as potential 

disruptions during the implementation phase. Similarly, electric utilities face high costs 

when integrating renewable energy sources or upgrading grid infrastructure, which can 

include both financial expenditures and operational challenges. 

Balancing Efficiency and Resilience 

Data centres strive to maximize computational efficiency while maintaining high 

availability. Similarly, electric grids aim to optimize energy distribution while ensuring 

grid stability. Both sectors must balance the drive for efficiency with the need for robust, 

reliable systems that can handle peak demands and unexpected disruptions.34 

 
33 Rueda, A.R., Henri van Soest and Hye Min Park, “The Promise and Peril of AI in the Power Grid”, The 

National Interest, January 25, 2024. 
34 Accomondo, J, et al., “The Intersection of Energy and Artificial Intelligence: Key issues and future 

challenges”, Morgan Lewis, August 12, 2024. 
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Infrastructure Integration 

Both data centres and the electric grid face challenges in integrating new technologies 

with legacy systems. For data centres, this involves incorporating AI-specific hardware 

like GPUs and novel cooling systems into existing IT infrastructure. Similarly, electric 

grids struggle to integrate renewable energy sources, smart meters, and advanced 

control systems with older grid components. 

Incentive Structures 

The incentive structures in both technology companies and the energy sector often do 

not align with a holistic approach to energy efficiency. In technology companies, 

incentives may prioritize performance improvements and rapid deployment over long-

term energy efficiency gains. Similarly, in the energy sector, existing regulatory 

frameworks and market dynamics may not adequately incentivize the adoption of 

innovative AI technologies or sustainable practices. Adjusting these incentive structures 

could encourage more sustainable practices and investments in both sectors. 

Institutional Barriers 

Both data centres and the electric grid face significant institutional barriers that can 

hinder the adoption of new technologies. These barriers include: 

● Regulatory Hurdles: Existing regulations may not be well-suited to accommodate 

innovative technologies, creating delays and additional compliance costs for both 

sectors. 

● Organizational Resistance: There can be resistance to change within 

organizations, where established practices and legacy systems are deeply 

entrenched. This resistance can slow the adoption of new, more efficient 

technologies. 

● Lack of Cross-Sector Collaboration: Effective integration of AI and energy 

technologies often requires collaboration across different sectors and industries. 

However, siloed operations and communication gaps can impede this necessary 

cooperation. 
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10. Conclusions and Future Directions 

The convergence of artificial intelligence, data centres, and energy systems presents 
both unprecedented challenges and opportunities for innovation. As AI continues to 
evolve and expand, its energy demands are reshaping the landscape of computing and 
power generation. This white paper has explored the multifaceted issues surrounding 
this transformation and highlighted several key areas for future development. 

The exponential growth in data centre energy consumption, driven by the rapid adoption 
of AI technologies, necessitates a paradigm shift in how we approach energy and 
compute. Traditional models of grid management and data centre operations are being 
pushed to their limits, requiring novel solutions that span multiple disciplines and 
industries. 

Several critical themes have emerged from this analysis: 

1. Multi-Path Innovation and Integration: The future of energy efficient AI 
computing will likely unfold along two parallel, but tension filled tracks. One 
emphasizes coordinated integration of energy systems and data centres through 
site selection, demand response, and infrastructure planning to achieve systemic 
efficiency. The other relies on distributed, often disruptive innovation driven by 
individual actors across the value chain. These tracks are not automatically 
complementary; they may compete for resources, attention, and regulatory 
support. As Clayton Christensen’s work35 reminds us, constraints in one domain 
often catalyze breakthroughs in another. For example, permitting delays for 
renewable energy may spur faster adoption of more efficient AI hardware. 
Policymakers and investors should therefore adopt a portfolio mindset, 
encouraging both systemic coordination and decentralized innovation as parallel, 
mutually reinforcing strategies. 

2. Technological Advancements: Continued innovation in AI hardware, cooling 
systems, and renewable energy technologies will be central to reducing the 
environmental impact of AI workloads. Emerging technologies such as silicon 
photonics and advanced liquid cooling show particular promise in improving 
energy efficiency at scale. 

3. Grid Stability and Flexibility: The unique power consumption patterns of AI 
workloads pose significant challenges to grid stability. Addressing these issues 
will require sophisticated modeling, predictive infrastructure planning, and new 
approaches to load balancing that can accommodate sharp and irregular 
demand spikes. 

4. Cross-Disciplinary Collaboration: Bridging the skills gap between power 
engineering and computing is essential for developing comprehensive solutions. 
Interdisciplinary collaboration and systems thinking should be fostered across 

 
35 Clayton M. Christensen, The Innovator’s Dilemma: When New Technologies Cause Great Firms to 
Fail (Boston: Harvard Business School Press, 1997). 
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academia, industry, and government to align technical, regulatory, and 
operational innovations. 

5. Adaptive Infrastructure: Future data centres and energy systems must be 
designed with flexibility and scalability in mind, capable of adapting to rapidly 
changing AI workloads and evolving energy availability. Infrastructure that can 
expand or contract responsively will be better positioned to meet both current 
demands and long-term sustainability goals. 

While these channels represent promising directions, they differ substantially in 
feasibility, impact, and time horizon. Table 3 summarizes the main approaches 
discussed in this paper, highlighting their relative feasibility, potential impact, and time 
horizon. 

 

Table 3 Summary of Approaches to Reduce Energy Use and Emissions 

 

Channel Feasibility 
(near-term) 

Potential 
Impact 

Time 
Horizon 

Notes / Examples 

AI hardware innovation High High Near–
mid 

Specialized accelerators, 
HBM, silicon photonics; 
strong commercial 
momentum. 

Cooling innovation High Medium Near Liquid and immersion 
cooling; proven, reduces 
thermal overhead, 
enables density. 

Siting & integration Medium–
High 

Medium–
High 

Near–
mid 

Co-location with 
generation, cooler 
climates, waste-heat 
use; depends on 
permitting and power 
access. 

Data centres as grid 
services 

Medium Medium Near Demand response, 
ancillary services (e.g., 
Calgary example); policy 
incentives needed. 

Battery storage & 
advanced inverters 

Medium Medium Near–
mid 

Mature technology: good 
for fast-response 
services but not scaled 
to full-load backup. 

Flexible clean backup Medium 
(situational) 

High Mid–
long 

Hydro and flexible 
nuclear (Ontario model); 
geography and 
regulation critical. 

Renewable 
procurement/expansion 

Low–
Medium 

High Mid–
long 

PPAs, wind/solar 
buildout; bottlenecked by 
interconnection and 
permitting. 
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Integrated grid modeling 
& planning 

Medium–
High 

Medium Near–
mid 

Digital twins, predictive 
siting; improves 
efficiency, reduces 
overbuild. 

AI software & workload 
optimization 

High Low–
Medium 

Near Scheduling, 
compression, 
orchestration; 
incremental gains, 
complements 
hardware/cooling. 

Long-duration storage & 
DAC 

Low (today) Potentially 
High 

Long Cost and 
commercialization 
hurdles; needed for deep 
decarbonization. 

 

As we move forward, addressing these challenges will require a concerted effort from 
industry leaders, policymakers, and researchers. Systemic coordination can accelerate 
sustainable AI infrastructure, while distributed innovation ensures resilience and 
diversification of approaches. 

The path ahead is not a choice between integration and disruption, but a recognition 
that both will unfold in parallel. Together, coordinated planning and disruptive 
experimentation can shape a more sustainable AI-energy ecosystem. 

The road ahead is complex, but it also presents an opportunity to redefine our 
relationship with technology and energy. By prioritizing efficiency, fostering innovation 
across multiple channels, and promoting collaboration while embracing diversity of 
approaches, we have the opportunity to build a foundation for sustainable AI growth, 
one that secures environmental benefits while meeting society’s expanding 
computational needs. 
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Appendix A - Workshop Agenda and Participants 

 

Future of Energy + Data Centres 

October 30, 8:30 a.m. to 2 p.m. 

5th Floor, 14 Story Street 

  

  

Purpose and Approach: 

As we think about the energy and climate transition, there is a need to convene cross-

sector experts with deep expertise to talk about how we get from here to there. The 

focus of this first conversation is co-creating the next generation of data centres. 

  

This invitation-only event brings together compute and energy experts (operators, 

entrepreneurs and researchers). Each brings deep and complementary experience and 

knowledge. Each is enthusiastic about the challenge and is thinking about it in different 

ways (i.e. hardware, software, energy, etc.) 

  

The discussion is Chatham House Rule. 

  

Agenda: 

08:00 - 08:30 Gather Light breakfast will be served 

08:30 - 08:45 Welcome and Context 

Setting 

  

Discussion Leader: 

Leah Lawrence 

Key question: 

What are you curious about 

learning more about today? 
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08:45 - 09:45 Weird World of Energy 

Generation for Data Centres 

  

Discussion Leader: 

Terri Steeves 

Ian MacGregor 

Key questions: 

Is all compute brown compute (aka 

underpinned by some amount of 

fossil fuels)? How do we change it 

to green compute? 

  

What are the impacts of large load 

additions like data centres to the 

electric systems, in particular for 

reliability? 

  

What might be achieved through 

waste recovery or different 

approaches to cooling? 

09:45 - 10:15 Break   

10:15 - 11:15 Computing Energy Efficiency 

and What Happens When it 

is Moved to the Edge 

  

Discussion Leader: 

Jim Waldo 

Jack O’Brien 

Key questions: 

Where is computing energy 

efficiency today and where is it 

going? 

  

11:15 - 12:15 Nuts and Bolts of Data 

Centre Operations and their 

Hardware 

  

Discussion leaders: 

Harold Moss 

Hamid Arabzadeh 

Key questions: 

How do data centre operators think 

about energy? 

  

Where is the “hardware” of 

compute going from an energy 

demand standpoint? 

12:15 – 13:00 Lunch   
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13:00 - 14:00 AI, Innovation and the Grid 

  

Discussion leaders: 

Le Xie 

Rob Davidson 

Key questions: 

What are the key concerns from the 

perspective of the electric gird? 

  

How might new technologies and 

innovation address these concerns 

and enable the energy transition? 

14:00 - 14:30 Discussion and Debrief for 

Next Steps 

  

  

  

Participants 

Chris Biegler https://www.linkedin.com/in/chris-biegler-816767a2/ 

Claudia Lopez Hernández https://www.advancedleadership.harvard.edu/2024-

fellows-and-partners/claudia-lpez-hernndez 

Dino Shiatis https://www.advancedleadership.harvard.edu/2024-

fellows-and-partners/constantinos-shiatis 

Doug Sutcliffe https://www.linkedin.com/in/dougsutcliffe/ 

Glenn Dixon https://www.advancedleadership.harvard.edu/2024-

fellows-and-partners/glenn-dixon 

Hamid Arabzadeh https://www.linkedin.com/in/hamidarabzadeh/?origi

nalSubdomain=ca 

Harold Moss https://www.linkedin.com/in/hmoss/ 

Ian MacGregor https://www.linkedin.com/in/ian-macgregor-

354533129/?originalSubdomain=ca 

Jack O’Brien https://www.linkedin.com/in/thejackobrien/ 

Jim Waldo https://www.hks.harvard.edu/faculty/jim-waldo 

https://www.linkedin.com/in/chris-biegler-816767a2/
https://www.advancedleadership.harvard.edu/2024-fellows-and-partners/claudia-lpez-hernndez
https://www.advancedleadership.harvard.edu/2024-fellows-and-partners/claudia-lpez-hernndez
https://www.advancedleadership.harvard.edu/2024-fellows-and-partners/constantinos-shiatis
https://www.advancedleadership.harvard.edu/2024-fellows-and-partners/constantinos-shiatis
https://www.linkedin.com/in/dougsutcliffe/
https://www.advancedleadership.harvard.edu/2024-fellows-and-partners/glenn-dixon
https://www.advancedleadership.harvard.edu/2024-fellows-and-partners/glenn-dixon
https://www.linkedin.com/in/hamidarabzadeh/?originalSubdomain=ca
https://www.linkedin.com/in/hamidarabzadeh/?originalSubdomain=ca
https://www.linkedin.com/in/hmoss/
https://www.linkedin.com/in/ian-macgregor-354533129/?originalSubdomain=ca
https://www.linkedin.com/in/ian-macgregor-354533129/?originalSubdomain=ca
https://www.linkedin.com/in/thejackobrien/
https://www.hks.harvard.edu/faculty/jim-waldo
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Klara Jelinkova 

(dinner only) 

https://evp.harvard.edu/people/klara-jelinkova 

Le Xie https://xiele00.github.io/ 

Leah Lawrence https://www.advancedleadership.harvard.edu/2024-

fellows-and-partners/leah-lawrence 

Mitsuki Suda https://www.linkedin.com/in/mitsuki-suda-

40054b10a/ 

Noman Bashir https://impactclimate.mit.edu/people/noman-bashir/ 

Rob Davidson https://www.linkedin.com/in/rob-davidson-p-eng-

6857127/?originalSubdomain=ca 

Terri Steeves https://www.linkedin.com/in/terri-steeves-

994a9b2a9/?originalSubdomain=ca 

Treyden Chiaravalloti https://www.linkedin.com/in/treyden/ 

  

  

https://evp.harvard.edu/people/klara-jelinkova
https://xiele00.github.io/
https://www.advancedleadership.harvard.edu/2024-fellows-and-partners/leah-lawrence
https://www.advancedleadership.harvard.edu/2024-fellows-and-partners/leah-lawrence
https://www.linkedin.com/in/mitsuki-suda-40054b10a/
https://www.linkedin.com/in/mitsuki-suda-40054b10a/
https://impactclimate.mit.edu/people/noman-bashir/
https://www.linkedin.com/in/rob-davidson-p-eng-6857127/?originalSubdomain=ca
https://www.linkedin.com/in/rob-davidson-p-eng-6857127/?originalSubdomain=ca
https://www.linkedin.com/in/terri-steeves-994a9b2a9/?originalSubdomain=ca
https://www.linkedin.com/in/terri-steeves-994a9b2a9/?originalSubdomain=ca
https://www.linkedin.com/in/treyden/
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Appendix B - Understanding Potential Transient 

Impacts of AI Workloads on the Grid 

Using the methodology presented in the study Li, Yuzhuo et al., “The Unseen AI 

Disruptions for Power Grids: LLM-Induced Transients”, September 9, 2024, example 

calculations were made to understand the aggregate impact as seen by the grid for a 

data centre with 10,000 GPUs and 50,000 GPUs. 

 

Assumptions 

1. GPU Model: We'll assume the use of high-end GPUs similar to NVIDIA A100 or 

H100, with a Thermal Design Power (TDP) of 550W per GPU1. 

2. Utilization Range: We'll consider a scenario where GPUs transition from idle 

(10% TDP) to full load (100% TDP). 

3. Transition Time: Based on the paper's mention of rapid power changes, we'll 

assume a transition time of 1 second for the entire cluster. 

 

Calculations 

 

Case 1: 10,000 GPUs 

● Total GPUs: 10,000 

● Power per GPU: 550W 

● Idle Power: 10% of 550W = 55W per GPU 

● Full Load Power: 100% of 550W = 550W per GPU 

 

Aggregate Power Swing: 

(550W - 55W) * 10,000 = 4,950,000W = 4.95 MW 

Rate of Change: 

4.95 MW / 1 second = 4.95 MW/s 

 

Case 2: 50,000 GPUs 

● Total GPUs: 50,000 

● Power per GPU: 550W 

● Idle Power: 10% of 550W = 55W per GPU 

● Full Load Power: 100% of 550W = 550W per GPU 

 

Aggregate Power Swing: 

(550W - 55W) * 50,000 = 24,750,000W = 24.75 MW 

Rate of Change: 

24.75 MW / 1 second = 24.75 MW/s 
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Summary Table 

Scenario Number of GPUs Aggregate Power Swing Rate of Change 

Case 1 10,000 4.95 MW 4.95 MW/s 

Case 2 50,000 24.75 MW 24.75 MW/s 

 

 


